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Abstract

With the widespread application of deep learning in fields such as natural language pro-
cessing, speech recognition, recommendation systems, image recognition, and video pro-
cessing, large-scale GPU clusters have become critical infrastructure supporting training
and inference tasks. To meet the computational demands of complex models and massive
datasets, large research institutions and cloud service providers have extensively constructed
and expanded multi-tenant deep learning clusters. However, this expansion is accompanied
by significantly escalating equipment and operational costs. Concurrently, GPU utilization
in real-world production multi-tenant deep learning clusters remains universally low, with a
substantial number of GPUs remaining in long-term idle or underloaded states. This results
in severe resource wastage and constrains the improvement of overall system throughput and
cost-effectiveness. Therefore, optimizing the exploitation of residual GPU capacity through
system and scheduling mechanisms under existing hardware conditions holds significant en-
gineering significance and application value.

In the domains of CPU and memory, existing research has leveraged lightweight paradigms,
such as serverless computing, for fine-grained resource reclamation and reuse. Serverless
computing, characterized by its on-demand, elastic, and fine-grained nature, is well-suited
for handling bursty, short-term tasks. However, existing resource reclamation studies have
yet to effectively cover GPUs, primarily due to the lack of mature multi-tenant isolation and
sharing mechanisms. When function instances share the same GPU with deep learning tasks,
competition for video memory and computing power often leads to performance jitter, train-
ing delays, or even task failures. Empirical tests on a self-built cluster indicate that unrea-
sonable co-location triggers significant performance degradation, which accumulates as the
number of co-located tasks increases. Furthermore, function tasks typically operate under
strict latency constraints, making them vulnerable to performance uncertainty. Additionally,
deep learning-related functions universally suffer from cold start issues, where initialization
latency often far exceeds effective execution time, drastically increasing end-to-end latency.
Consequently, safe and efficient co-location of serverless functions and deep learning work-

loads within GPU clusters represents a challenging yet valuable research problem.
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To address these issues, this thesis proposes SMORE, a GPU resource optimization frame-
work tailored for deep learning clusters. This framework is the first to systematically intro-
duce the serverless computing paradigm into multi-tenant GPU clusters, utilizing function
tasks as "filler workloads” to reuse GPU resources not fully occupied by deep learning tasks,
thereby enhancing overall utilization. Unlike previous approaches that focus on single work-
load types or treat GPUs as indivisible units, SMORE aims to selectively admit appropriate
function tasks for co-location while maintaining the dominance of serverful deep learning
tasks, balancing utilization improvement with performance stability and service quality as-
surance. The main research contributions are as follows:

1. A performance degradation predictor is designed and implemented to quantitatively
characterize the impact of co-location. The predictor comprises a pair-wise co-location sub-
predictor and a multi-way co-location sub-predictor, employing a strategy that combines of-
fline training with online updates. In the offline phase, training data is collected from various
co-location combinations to select the regression model with the optimal balance of accuracy
and data overhead. The multi-way sub-predictor then performs combined inference based on
pair-wise results to support complex co-location scenarios.

2. A degradation-aware dynamic scheduling algorithm is designed based on performance
predictions. This scheduler seeks a balance between maximizing resource utilization and
controlling performance loss. By integrating real-time cluster monitoring with prediction
results, the scheduler performs admission control for incoming serverless function requests.
Through intelligent evaluation and selection of the most suitable GPU nodes for task place-
ment, the algorithm effectively utilizes fragmented GPU resources while strictly confining
performance degradation and meeting function Service Level Objectives (SLOs).

3. A dynamic prewarming mechanism based on a Long-Short cycle Long Short-Term
Memory (LS-LSTM) network is proposed to address function cold starts. This mechanism
leverages the LS-LSTM model to capture both long-term and short-term temporal patterns of
function request arrivals, achieving precise prediction of future workloads. Based on these
predictions, the prewarmer can preload deep learning models in advance to eliminate cold
start latency or unload models during idle periods to minimize resource wastage, thereby
dynamically optimizing the trade-off between response speed and resource occupancy.

To validate system performance, a prototype of SMORE was implemented and extensively

v
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tested on a self-built GPU cluster using real-world Azure function traces. Experimental re-
sults demonstrate that SMORE effectively addresses the challenges of hybrid deployment,
improving cluster GPU resource utilization by up to 34% while maintaining workload per-

formance degradation within an acceptable range.

Key words: Deep Learning Clusters, Resource Utilization, Serverless Computing, Co-location,

GPU Scheduling
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Figure 2.3 Co-Location Evaluation with Different Request Numbers
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Table 2.2 Cold Start Latency of Different Inference Functions

i (Model)  #uizZhkEn} (Warm-start, ms) ¥ )3 ZhkEN} (Cold-start, s)

VGG-16 3 1.2
MobileNet 9 1.0
DeepViT 11 24
ResNet-50 13 1.5
BERT 37 2.6
RoBERTa 10 52
DeepFM 8 0.6
SegNet (MAN) 50 1.6

R BITH A PAT I R) 2 18] R 2257 A, ARG ARCE IR B8,
55w TR R B E N AR 23 TR GPU NI i, K0 TE)R5-TH AG A E TS R SRR R tE L
MAESE BRI o AN BURBESR T ORI 2, Seini IR Sy B F SCUHim 2 A7
A, el TR %

24 EXEING
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B, $EHAEF TR GPU SEREVEIA PRI TV IR FH 50y T 1 A
F1. BRI, AR, KR I TR 2 ST SR I A% L LS

LSS 08 B2 R, BRSNS, R AR T

eI IR M GRS, O 2 P EC TR IR 55 T 5 12245
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WSV R B T e B TSR 1 A B
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Figure 3.2 The Workflow of the Predictor
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XU 25 R (U 2 B 2 0 3 0 SEAL R TG, TS AR 540 1 2
SR ULERAO B . AT AR AT R AU S5 2R3 00 T, 5 3 R 55 78
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A 31 EITREE A ST B AL
Table 3.1 Selected Deep Learning Model Features

¥#4iF (Features) i (Description)
FLOPS 7 RIE B R (Number of floating-point operations)
Params Z5% 5 (Number of Parameters)
Memory T 5 R 277 (GPU Memory used by model)
Activations 10 BRI (Number of activation functions)
Num. Conv H 2% (Number of convolution layers)
Num. Linear 28R )2 40E (Number of linear layers)
Batch Size HEALFE K /)N (Size of mini-batch)
Num. Norm JH—4k /2% (Number of Normalization layers)
Num. ReLU ReLU 24 & (Number of ReLU layers)
Num. Embed A JZ%3= (Number of Embedding layers)
Num. Pool Ak 225 (Number of Pooling layers)
Num. Drop Dropout JZ24{& (Number of Dropout layers)

Z[A 4 GPU 5 4, TR S M . (eI, RSB 5
B R G B S B R B 6 A 5 U O A 5T S A B B, SR R v
B 3 A2 BT A VO SEIUIER SR S HE A W) B AL TP , SBT3 —
KA, F4E5 BA A PIRANE . AT T 5 AR IR &7 B 45 5 F 7E GPU
MAEFTI e 4, B335 GPU WAL FI S M BAF e 4 1, DA S| %
FITEREIEAL
3221 ZYEFHE TS EAFER

VR BE 2 3 AE 45 1 VR VB I AR B B 5 BE I A M. R TR AR R IR 4E 45 0
GPU WA rkiat, A0t T — B & B ASI5 47 6 4 15 0 45 JE H 15 A
LU .

HE, RG2S, A 3CHES NVIDIA F 74k NVML T RS2 R4 GPU [y
WL ALIE (GPU SM) FI %A1 247 (GPU Memory) i fi1 3, ik p A Hhs 2 [l # ik
TSR REAT S SM A R SR TV B TC R S I LR A, T AT o
W B T 1R SO AR AN A DA % A A7 - (Out-of-Memory, OOM) [
R .

K, FEARSI2S, ARG IR B AR Ze VR B2 S R
1, FIRER RIS, R M SRR A B AR R G5 SRR
PRI, AR SO T AR IR AL 6 (), $HEE Bl BT 12 2 5 S 7 B x € R12,
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o VREBREEREAE . R RS EL (FLOPS) 5% %5 (Params). FLOPS H#%
i TR R, TSR S T RIAAE I G RERY B E i s
7. TREFRHRIE, BT A4 (40 Tensor Core W) HIRE2E>]
HEZL (PyTorch, TensorFlow) Y& T-SCEi2E5, B FLOPS A XE DA S EL 5L
frid. i, AR ET TorchProfiler i BV LA AT, BB T— IR 58
BRI ) 5 B ) A 49 SR SREBURG B ) 58 1A S T

o WARHE: 25K (Memory) ANUELEEARCE, WS RIS E (Ac-
tivations ) o 75 A7 (5 H IR E TEIR G 08 I BE 25 ) Ml & il T v W s o ) i A 2
FEAZH, MG | & R P REAR A o

o hibAiRHAE: AFEERUZ (Num. Conv) . ZPEZ (Num. Linear) . #RAJZ
(Num. Embed) 59, XSRHMERE TR TR, flan, SHRZE%
£E1Y CNN BALH 2 1T B2 IR, %16 CUDA Core | /E3a4; Tk AJZ
AR ALE 2 WA T2 R .

WT— M ER AT B LG (Th,s;), ARICRFPIHE L ) S 3E T HR%, A EH
BB A A & X
Xij = ¢(T;) ® ¢(s;) €R* (3.1)

Hr o FoR i EPHERE. X FEW PR L AR TS AT S R R
KA RIS,
3222 HETREHLARM LM ] ) s

LSS T TPE R R IE 2 AR L AR . B, YR AFA T8 b R B 38 LM
PS5 FTREA A To ks — HOEORBIE, PERERF S W2 U k. AL GE Sk ]34
AURELAMUL A XA AR, . I, ABFFRAERT T F AL ), S PERE LR
M (Random Forest) AF AU T 4% B %0038

PRI LR - BER T AT % & -

L AR R Ty - BT U SRR G207 TR REE H AR HIRT AR 25 (Rl e T X0 O, A
RHOmAE FIAR BERE (B0, #5 T BA47 > 10GB H.s; B17 > 10GB, NiR{k
JiI3E) o

2. SR G R M LT IREEME M4, FEVLARMAER IR B AR T A S
KAEEE, HAPRRERY IH— AU

3. WffE BRI RRAE BT, A SO AR AL AR IR ) B TG HET
P (W RAFH TETES) -
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R FEVL AR & B BRUSERS {h1, ho, . . ., hp}, FEALHE IS Bagging SN A
Xi;j PEATFIN, A EMETEREIRIL(E DAij A T DR SRR i A ) 35 -

. =
Dij=+ ; hy (Xi;) (3.2)

3.2.2.3  BIBTAL AR S P3EE L

ERAMEG T, RN mEEEA KRR, BAAES . 6
un, —/> P99 FERZE 10ms (1)l 5525 TO BN oK AT 5571R 6 2 20ms (341 10ms) |
HAEREBI A 100%; T —HERT 100s I ZRiEGR LA 100.1s (347 100ms) ,
PAIALH 0.1% . 2 FH R TE A3 5 iR 25 MSE, R84 2 5o i 5 KRB i FLIR 55 =
RSN ZE , T2 08 T KB RERT R 55 2% TR0 eR £ AT 55 A AR AE o

N T FRPGX — ), AR SOR AT 7 ARG 2E RMSLE A 4 2% R A5 1 DA
Febn. HAEEE LR -

| &
LrusLe = J I Z (log(yx + 1) —log(yx + 1))2 (3.3)
k=1

Horp M OEREARCR, v MESEIERGRIE, I BRI . RMSLE (5]
AHATE S
o RTEMDMERAZE : XA, RMSLE 52 b2 A B H -5 B H R
fw2s, X555 559 H A% SLO 38 & DA E 43 e S 2T 1R — 2K
 CPHRTBSRES: EARAMH] TN PR A RN SRR ) T, R
PR AU IR AL DX )1 B A DX R] 3 B LR AR 1 F00 i

323 ZHRESBEWNSEZRE

TESERRIA ARG, O T ARE R GPU 5y, RS TR 2 2 IR 55
i JC B bR B R R B 22 ] — N AT R S5 07 5 e BRI, XA 2 R A S
ok T ERBPRE SRR B S5 f To R R AU KN N, IR ke,
BTEM A R L O(N®) o XX FH SR A A0, 1Rl I B LR AR
T AT REIIR AR E A QO &, AR B AN ATATIY . S, ASCEET
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AT A% L SRR RS 2 18 22 R G T ) LA 24 70 A Sy 22 A UL 7 XS 52
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AL B IR AT BN Z AU SR TR 26 B o X T B2 1 3 R
52N GRIR T 5— LI BT 55 25 TORBR B Soer = {5517 € T (K [Ssee] = k)
MIRINRE G5, REMEEEP KRS E S, EXMRT, WHES T,
FPEREIBAL I JERTB LeE Bom, PR REREYEUS (40 PCle 4558 . L2 267 . DRAM 4
5E) AFEDFS . M EME SIS FRARB BB, TRk LK
i — ELZSWEHAT, G0 RERG AT IR 0 B, S 0B MY BE S A

T HEFAFAEX T, ARSOH T B MEREIRIL Deg™ BRI I A WL
BB A AR, st B4 iz

Deg = " y¥(T,,5)) - Dy (3.4)
J€Sser
TEMLAT R, Dy By AR DU FUIES S  BEB A, R T 2R T B
IR, y O (T, s;) MRS AR THAERE, SHETHAS (T, s;,) Y H
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MESser,m#j

Hor, S—IRRFES ORI T, BAE o P17 5 0 Lo ek iy
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S A SR T 45 HA R B A, (ELTTAE SRR A R TR DA Y22 7 B
BB T AR SBAAE SREARIRES . b TIRT RGUSLH AR Sy, A SO T 2k
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BB —MELM AL V. 5 SN ¢ (IR R T (W) Sh Tl e 22 197
Iy
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SO AL S AT RS IRIIETERE 15 0 BF E[4Lat ()] FR ek BHE— e Al
BRI —CERIRAIR S, SR T HXT T BURAR ;e 22— /MK
THEE (B 107°), HFEikah %,

B S AT RAC AR RE U T A BT aR . P B AT 55 Tl Y
LA SR ARSI SRR, Do R I SRAT: 55 REAS PRk SR TE SR T 1) T U
ERIMAR S A REE A W LE T P(f) MR, AR RES 3 S
BPATWE , AR B RACSRRERT A R0 H

3.32 ETFHYRENRERLE

TERE T ACRTTR Y )5, R — 2 R M des P Se 2K f FEDE R4
TR R R BR Y R gy FE— ST GPU Y G KB,
RN, H RN O(M). XTI TR dr b A i — 1Y
A, EAM SR E R AR , 18 AT HE R RS 5 B[R] 20 5 BRI RS
i, R EAR A I D B B T Rk

N T AEVA B RS DR IR 2 [ U R T4l ASSC g 1 e, e R

(3.8)
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#4535 R AR R

—FEET “d-BEBEPLRAE (Power-of-d-Choices)” SRR R A I ESE . BAR
M, RS AN RSN G, 2RI 2 BEILREE d T al GEF
d=28d=5) MIBGEEE Geana. X—RIGIET RIS 2L, C 0L
FHRERSAEAR AT BT, AR AR 4 0 S 3 2] D 2 i T AR e 2 1

WIS HHE R 2 M Gl B R d, AR SCRRERIRR IR S AR 2 O (1),
X RG RS TR . BEAh, BENURAEA RO i 7R Ty, skt
T AR P IR, B A AR B A (R I <48 [ — R 2L
As/wos ty 1)1

333 FHRBMBENSEK

TER IR TS d DTRBIRIESR Geana JT . RGBT A R g5 AT
R P B AL, DA SE R AR I R B 2R I T AT, HHAE AT rh
It

S—BrBe: BEIRARR A RAFRE LSS i B BN W] IR B
— H AR ORI Y R, R B H2fi % CUDA 3R OOM 41, ‘FEUIEAEBT
MRS5S B, XA IR AR Bk, REHNEREAARLR. &
Memysea(g;) N R BIERNS M HYRATE, Mem,oq(fi) ) REGH RIS A IEE (L
oK, Memcq, ) GPU WYY B EAF BB . 19 RO 20T 12 -

Memused(gj) + Memreq(fi) <0 Memcap (39)

Hrro e (0,1) (BlnEL 0.95) E— M LEBER. 5IA o WHWET A EARA
PAJe CUDA | SCHF £ 7 BE G vh 25 1a], By 1k PR 200 5 300 40 e 2R D

B BrBE: BRPERRAEA SRS 2 HbsER I . X Tl i i A i s, REEH
FI% B2 TR ERE TN RS, TR AR B RN TIRS . B Dirain (g, ) N
P 5 G INGAESHERERILER, D func (g, f) MBI R B RERILER . T
PRI SLO, A3 ™R e A3E Hil 45 F (Admission Control ) :
DAAtrain(gj’ fi) < 9:’;;?”
Latpase(f;) - (1 + D func (g, 1)) < SLO geqatine
Hor Latpase 2 BRBEM 5 R B BEMESRAT IR ) . 228 A B T R S8 R T HIL A1 -
SR FEAAT 2B TR A RS T 25 28 R & FEON AT 45 ™ E g (Bt o7er ) Bk
FHEHE KR (B SLOdeadtine) » WRZTT S AT # BRI A
SIBARTIAT, SRR BB R A BRGS0, BB R URRE IR

Admit(g;, f;) { (3.10)
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R N 2 T e AT 553 E T

WIa, TEUTA R _EIRUE A SRR aI 47715 i 4R & FeasibleSet H1, A< SR A NAY
E-i/]vﬂz%lﬂ%jij:%%ég B/:J E )F/j—:\‘ ™ }‘J_:—'; gtarget :

8targer = aArg min (/1 : ljtrain(gj, fl) + (1 - /1) : DAfunc(gj’ .fl)) (311)

gj €FeasibleSet

Hrpr A € [0,1] 22— A AR E R AR RN 7. S8R EE EIHUL ST R E TR,
YRR A Pz, A S SRR ST R RO, RIS Ao X R AT R S
BERS RIEE WA AL 55 /K, SEBL TGRS HERRE AR 2 1A ) SR AU

Bk 3.1 IR 55 s T RORT eR RO el e SR

Input: FFREEEK req, 500 G, REEE 4, HlRE fast_mode
OUtPUt: E 1:/1—:“%/'\1_\:': 8rarget gz 0

/* BB MNT REE </
1 Geana < SampleNodes (G, d)
2 Steasivie — 0 /] MEFHLE
/* BB = EAESHERK */

3 for 8j € Geana do

/) FE 3.1: REFELHKR (A BI

4 if not CheckHardConstraints (g;,req) then
5 ‘ continue
6 end
// B 3.2: HERATN
7 (Dtmi,,,Dfunc) < PredictDegradation (g;,req)

/) $B 3.3: #4k (AR B.1)

8 if CheckSoftConstraints (gj,D,rain,ﬁfunc) then

9 if fast_mode then
10 | returng; /) ERER
11 end
12 score «— - Dypain + (1 = 1) - ﬁfunc
13 Steasivie — Sreasivie Y {(g),score)}
14 end
15 end

// $B 3.4: Optimal Selection
16 if Sfeasinie # 0 then
17 8rarger € aArg min(g,s)esfeusible (S)
18 return g;.,qcr
19 else

20 ‘ return 0 /] TwREMT A
21 end

vk B AL HIEA T SMORE F A% Uy Ve JE AN iR 24 7 45 22 o BT 5k Reg
SSKIT, JHRES S e icdn At B AT e g, DA MRS S 1 DAk P 5K
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GRS SO0 S MBSO i 3

/o i P TR L DR SR BT LR A . AR IR RO B =B et B, &
TR A RGP AT d-BEBEVLRAA R B AR , XA TRRAS (Stateless) HRFER
WA AHE T I R SR R A R RS B R R R . K, R A
i R WE AN B —FONRE SRR A (PR 3.1) , BEd s b
SROCEZIERARIATHE, By 1 OOM s 55 “HONEIERELRIEA (PR 3.3), FIH
TR B A BT AR S TR, PR B R ISR 55 1B B 075, Berki
W SLO dcadtine WYKL BJ5, FidMRIs RGETECR M B 1B LY DRSS 7 iy Tt
AT RMEYGERS (First-Fit ) 5%, — B 2 2R i3y m B0k b, DAk
AMETRBEREE 5 TAEH R R S @ AC (Best-Fit ) SR, i Iy By al 471t
VPR LR O T I B AR R, DASRORAL SRR R RO o 7 Aok 4 T AT AT i 3
JRARAT, IR TIR BRI 0] A

FMAR 16

FEH A TR, TR
r N 2 Eiﬂj Eg@
Fy Fp c C
Fy
vl VAl
Fr GPU4 GPU3 ]
B Fy ‘4 Fg
Ro ] —
GPU 1 i 7/ WA, s
GPU2 7 ... Wiis....... 00 ...
1% A I 7 R WA
GPU3 ... /0 2020
777, N . 77,77/ M W
GPU 4 o ! D W
SM fER=R SM =R SM =R

Pl 3.4 BRI
Figure 3.4 The Example of Scheduling

e B4 B R T R R R P VR B R SRR e B2 S A AT Hh A
AEREB Fas Fs 55 Foo MEREEIEN, RY0H JoRHA LSBT, FEHcd 2
o B A BB, FEARBIN, Fa IR JESA5 o 0es, B I e H
SEATVEE . BT RR IR T, RGIRIR SO ) S AR , R P RE T 28
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R N 2 T e AT 553 E T

VPRI S BE GPU LS (8 b S T R 7 PR . TGS LT,
{5 Fa S GPU4 Fir £ ML AR WR/, FLW R RS G H R, MURZ Fa
VA GPU4. BiJR, RAHUN Fa, IR P H LS GPU L BB 1,
SRR BRI FUMIOE GPU 3. 7EALIR Fe B, BUSSRED], ZEALATIENE GPU 3
BYEH, BE PEONZE S MR AR P 00, SR S ORI R
(SLOueuaine)- Wlt, RGSEATLHE, 4 Fe BHEANI], S5 F IS

3.4 EF LS-LSTM pyFn#hzs
34.1 RBE:ERMMSES LSTM ik

TS5 d% TR 2 ST B A 7 vy, W RS AN DU PR REMLETAY 2R IR, B2
FERBEBAEABMRRAB N . SEGEMNEER Web il (BH HZEDIH
gl) BEAIE, W A s TN EREER A (R T E, TEAE SR AR 1
RH.e NT RGP, ARSCRF— KGR IHBN R Teora LA EH
DA~ ERAT I S BT B -

Tcold = Talloc + Tenv + Tgpu_ctx + Tmodel (312)

P, Tunoe REBBAHERSE (41 Kubernetes) JEFT VEURIIE, BYGHITUL 22
HEQIAIIFL; T, ¥ % Python REARIZ AT (41 TensorFlow, PyTorch
5 MXNet) 95 A SHIRTFE: Tapucrn 4545 GPU 1 F 3L (CUDA Context) 6
AT, X ARSI AE GPU AP IR . AR N L
i, FEEFT A, HLSCBRAERE AR LT AR B YL T Tt MRS
BT SRR A (RS A70K) %t CPU IY{EiE % GPU A7
(H2D Copy) ff9H1E], ZZHLT PCle (424 S ARG VO Font. SUURZRN, X1 T2
B E R BUHIL, Ty cox + Tooaer HEHE SRR BN TN 80% D |, SEA RS
S RAIHKTTAERTE 10 BB L, KAt TSR MR TN Tovee GEREAIL
R, UG, AT PR R R A5 TR 5 S5 FL AR . S R R e e
A RRTTETI, ST BEAIR Teora 1N T RGO

ST, BRI BT B BRI R A ET— BIATEX
MECA . SR CPU SIHIRI, GPU VEIRILEN R RS BE. 17 H FIe
SO B 3 ) VIR TE R I 2 | PR 200 g . ) TAERR RS R Bh
WD EURIR B2 [ SR RGBT Py e, ASCHEE T —FiE T BUB KA A2 )
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#4535 R AR R

2% LS-LSTM (IR A TSRS . pit T P B v IR 458 0 SR AL 0 5 22 L 1 1
F UL TR BRIV e K R 00 I s B r e S L5 e ik, BA— R
FEBTRIAAL (40 ARIMA 5 (7 29 RNN) -t DA 7] B0 2 15K 795 o A 8 R 0
fiE. LSTM 4535 A1 S AT TR ST IHLH, G R80f ke TS E 21
£ RNN 7EAbFRK: 751 i1 B5 BE 0 2 0150, B A 7 Sl e 1) 32 ) e o2 50 52 2y
BEBIHCH 2 2, DI AR 38 & T S R PR R 55 s B A T e

T AL TSI AL A 5P R 2 I ORI , AR SO T AT Al 3
PRI T AL AR REL SRR TR Ruasre, TSI B A T TS
ST 2 RPRZS I L), ML T RS B A . BR RS M AR 3852,
AT FIRE | AR G E I NI BRI IR R, T SRR i
K, U R G Re  RIR g SN

Zf\gl T,‘Zl)e
Ryaste = Y; T(i) (3.13)

i=1 “total

HK R IEENF Reora, BITERIER PR BE Ay P IS4 DG 22 17 56 B8 SR sl AR
TR EE B, X B SO 1 ] PRI I 55 S 2 AR . 2 Neoa NKEVR IR B
ﬁ%*%&? Ntotal yﬂﬁfﬁﬂglé\i%*ﬁ7 Ij]\[J

Reota = (314)

AL TGS B A AE R T BEFRAR Ruvasee IS, X Reora HERFAEMARAIZKF-o ANBIFSE
DL H A AT ATE 20 R — A YA e/ MU T RIFE 9 2 IR 55 SRR 2R Reora < €
(Herf e NAZBUE, B0 1%) BIHIEE T, BMEBTEIR I Ry ase . 54 LS-LSTM
PR BERAS TN, R SERENE ST B HUNGT LAY R/, AIMTIE DX — e iR I A o

342 WRAI{ERSTWNRES

B TS ERIAL ERR, AR T BRI A R R L. e B8 iR,
RGBT, T Pt S AR AL K R, ST X GPU VR RS
QAR . TAERIA T B R A S BB B . R4 W F2ek e DASF 471 67 Daemon H4
Ty A AR T, SR BRI 45 8 0 A B B 4 2 v L
I 465 522 0 0 9 B R s SR A B 6 1 PRI S0 e X T
BRI 3 T 2 T 28 0 24 L B B P 5, AR S MR8 B T Rl 4
B IR E 1 Ar (B0 1 404h) o B ¢ NI SEBREI R EOR 1, A SCHIEKC
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EDI5 SR
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RETNER
Pyl
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SRITASS [« @ TR
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sEEnA: (| PEERn

ERRELER LATHERC,
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Pl 3.5 JET LS-LSTM 12 ik LIk
Figure 3.5 The Workflow of the LS-LSTM Based Prewarmer

N B D3 SR 1A x, VRS ASI P i ARRAE [ B

I:rt—n_,u i—n+1 — M ri-1— M

T (3.15)
(oA g (oa

o, S T LSTM [ 25 (il S5O i S AR E 1, ASCBIAT Z-Score IH—1k
AEBR, o 2y B S R SRE IS S b v 22

Bt o, TALERS 0 ) AT A S LS-LSTM Bl . H i (5 A
(LSTM-L) S8 (LSTM-S): LSTM-L (i ek (it 24 /M2 7 K)
I S BRST Diong #EATEIEMNGR, BAERHE AT EH 89 20 H 239 M (Diurnal
Patterns); 1] LSTM-S NI METHOWZ MM 22, BHGLE (At /) 1
IR Dsnore HEATINGR, BAEBUBURIN Y BRI IS AWK FIE . S T BT IEBIR 2L,
AYER B e DBLH, 5 (R R R i e o R A R A TR 2 T

P B AE ML RS 2 AT . RGBS T o AN — 2
R THME P -

Feor =a- fL,t+1 +(1-a)- ’A'S,t+1 (3.16)

Ha e [0, 1] Bl iR E R, TR RGN 35 5 sh i i
. BUATEOLT o 509 0.5, EAER BN AE IR ZIR G, RS2 A SV o
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PASE I AR R AN

%, BAPERIZR RS 7o SRR AR C B ZEEIAT IR 4 R 3R
YPWMFTKETE (Fr > C) BF, RGESEATMLZ S GPU R SCRIA - SR8 N2
TEWH) EZhY 4, VARG S0 Kay hIAaas , AR R B sh il . T
KEWE (P < C) W, A TR IEBN RS SE R IERR S, REER AR AN
AR, FORMREHOTR U, AL PREE IR S5 PR i i T S5 B GPU BHUM
R ERNRAL -

3.5 AREING

ARFERTR A 5T 1 55 A 0 RO SRR () DR BE 27 > SRR BT AR P AR S BT AT
TN A . EOG, MR RRNIEER IS TARRAREATARE . 2R, 23 B2
) = A% DRI T, 2 B TR A B M RE IR AL UL B . JBRB A ]
MDA B B LS-LSTM 1 E B FTALA . TR A0 1k BEIR AL AR 5 AR AL 1
PR BESRMSAN GG B, Gt P S P 07 28 ) 1) T 0 RS S A A AL A AT T, DR
e 55 S5 A AR IR T 96 B T RO T . T LS-LSTM 4 =gl FEAHIL il 1) A
RAIHCAZ M A5 L P i AR AL, A ROT B 1 R = T E AT 55 1% S Bh A
B EE S RN 2 Z 18]
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F4E R

HT45 3 2201 SMORE ({9 REEMBET 5 X ML T, AT PR LR T 2550
TR . b T RAEFHR I R, A% SCFE Linux SR8 iz 7 — A 3hgse
T JRR R 5. RGERERR I Python fFh R BIF 152, MRS 3000 47, Hrr,
VRBERE MR S I 2R 60 S TR L T Py Torch REAR Mz, 7 45 28 J0 A B B3
TR 5 FlaskPI gl Web ESLEATERSE 17 LPRIE 1O 75808 15 0 i gRPC
WS

ARG - 45 Bl 7 SRS TR R SR RS T, RN
T T T 5 BT T 14 B A BT Docker (b TAERRL: 45 B ik
W3R TR 45 28 TE R R TR B O F R, B T T Flask AR feas: Ot 5%
gefpEPE s 45 I WA TR AL BN RA TRSCH, G B B R L
BFAE TR DA SRS U125 S AR 68 B VR AT T IR o R A TR R
SEPL, WA T ULHEEER . ARG BB BT SR A B R 0 g s 4 .9 R
T T LS-LSTM [ i SB35 0y 2 B L S B SR A B 1 s, 46 .6
T T RGBT, AR ORGSR TR DA S
03 1 b FRARERY

4.1 REZRGSIRAR TERERMR

TERGRSERL L, WPl PR, AR 2 50 R 4 P S R T 4 B
HAKAE Docker %f GPU ¥y 1575 2824 i FELWIMEAT 42 A 3. 45171 88 ph R B 28
PERER AL TR 55 DA S A 2 S BB, S0 T i 4 SR Ve O I L i TR
TP BRI f B4 GPU 7 LR RO AR TR . 3 IR )
I 4525 S8 VA JIR 55 25 T RN R B 55 25 2 M B, 6552 2 B v 20 R 3R A R B DA S
WSRO RS PR, PP 1E 5 5T HTTP/RPC [ LA 3 1., MTiFE
Docker B4 S2B0%F 5 #6748 40 Hp A2 AT o

TERE T o, VHRESE N RGN PR, XM — BTN 45 B8 TE S R B
BRI TR, WHASES 4R GPU YRR ST 454010 5 B TR B S ek 300 Mk it
B4 AR E LR GPU R . A7 5 ) ST 45 AT TI A 46 Wil szt

@  https://github.com/pallets/flask/
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EHFEE BIETF@E
FﬂIFl GPU 5888
EHAFER -
i ﬁu 5 1 \
BEES BaED
N BHEE
- FAER P RXIE#E Docker SFiF#fE |

3 yy WIRHIE LIE GPU T
R | BUHER TSR ait |
§ : wiawsg | BORRREN  sapsstasas

(HTTP)
HEAERILTRNARSS 3
BESEEBNEUETE <

T R \

FAFRAR R SRBRHEIR HE N

GPU H= N

P 4.1 SMoRE i) F 4 B U

Figure 4.1 Overview of the Prototype System Implementation of SMORE

SERERASIIE s 24800 sR B SR B, VRS UR I PR BB IR AL T AR 55, &5 24 mifee
& GPU 75 i B IEFESATIIIGT 55 5 R AL BiE B, AR RR A R84 &) i
PEREIRAACY:, FHFE RN B THE A IR s . MERBR AL T AR 55 AR ST /Y
LRSI TE, MIMEHSE — i AfiE 1, N 2k 2 b BeUll 2545 20 i 1%
REAR AR T DA K PSSR 4 A iU Mk BER e A 26, AR SR Eifr, N
PR FE AR IR 0] 25 58 AT 45 H A AT RORAS T IR IR AR Al T . T AH O SR M AT I T )
S SRR R ORI, AN [ R R TR RS O R R T @B AT
R R GAE DR 5 20 IR SR AL SR M A B 5 A 25 Tl

EHHRFHEMN, REAERG GPU k54 BB —MEHrTy R, HE
it Python [¥) Docker API 4% [1 % 453l Docker Sy AR AT e 2Ud il o 37 AR BE—
J SRR A, WA NVIDIA ) NVML B2 [OREARTT & GPU Fi
M BAE S H A SRR FR bR, HRF R G 5 e RASEE _E ik 24 H 1w 7
— 7T, T A AR g L Ay R A B ST AR {6, FEAS B 3T Docker API 4
AL el AR SR ST RS A S R S A . W IR B A SRS AR
HEAMINET S EmE T, KA h G SIS RS ML, 7SR
PLEIZEA AN, RIEWEE R GPU 45 & (5 BAL'E Docker 217240 KIS &,
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SLIYNGRAE S5 MR E GPU AT o« ARk 55 4 To IR R £ A Flask pR B2 #5782
BT, FARWNERBAT IR Flask B #EAE, ARG 3h M Broe s H PR iy m 2/
CUDA b F3CHldafl, it g —) HTTP g S SMR AL HERE AR 55

AE b g P T A B T P R TAE R, R 55 2% T sk 400 SRAE A TR i 2
AJUNGAT S5 ST I BTN P rT DS - E 98, el B2 RSt —
P2 11RF BRSO R SR PR A2 BRI BERT . AN RGUEE IR BE 27 ) YN GRAT 55 B R A AR AR
ERARMSI PRI, 4R AR GPU 5 f B R IIF B H s e s =
TEAFAE, WS AT A 5SRO/ L BE A Y ZT 55 AR &
R IR o5 S PR AR AR A

2907 1) IR 55 44 T BRI BRI B0 5K IR I ﬁf%ﬁ?émﬁ%ﬁﬁﬁﬂiﬁm%
5 B @RS HE, HRAMERRRITTNARS, 456t GPU g LE &
ﬁ%W%E%Q@ﬁi%%ﬁ,WHTKEAEEQT%ﬁ@ﬁaﬁ%ﬁ$of%é
FEMH) GPU f#., Fl i v REIR AL DA K BRI SLO 23R Ji5, TR E ik — 1
JEPEREZEK H BRI T B AR SR YR A R R B AR i, FF 1037 s rg AR AR T A
JEFR 2

AR A BRI RRAE U B 18 205, R R & 2 AT 5 _EX VY Flask R
BRI HTTP S i 3047, SIS AT 5 eI B . REOE K52 T/,
7B S C S AR YUE FH R S PR B E L FRATATE] ) GPU s L0 DA B P A 1
REIRALULIAE , FF-Rfx LE%5Hs a1 45 1, T S 2Pk AR A AL i A HE DA B
JE SRR ) FE— 2B 0L o X PP AVIGRTE 55 0 . R B A L A R
55 a5 TOIRA R BOT K R B G B S LZEAY . RGEAE Toia el sl A YRRl AL
HIRIERE T, SEBL T 6 R 55 2% J0 I8N R B G0 — 48 BRANAE TR B 22 ST ISRt 55 2 B 1Y)
ARG .

4.2 HRFB/TBARLMATIAESCH

JR R S AE Docker 5 Flask 2 A8 T — &R 8 RS54 To B 5B AT T30
Bio WA PREGEITIXT R, — A7 1% Docker 2845, A4k INIZ T4 —I1 Flask B 2
¥, i TS0 E S48 GPU HiWrig 11, MIMEKR—M445% T —1 GPU
5 RECGEA TR S . 2285 [T Python i) Docker APT Fi R Fl4 X 2L 45
%, HHEPH <ip, port> FFH, SLHINRECLHIR L AR,

ZX4% AR Flask B G AMRAE—2005E CIRG . TERG— W HTTP $: 00, T3¢
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Table 4.1 Main APIs of the Serverless Function Runtime

N & B

/ BATHM R R AR O, T HTTP GET Ji&if1 . ik
FEFAPER A B JSON,  H TPkl W 4545 1 Flask Jlx 45 /2
EONN 1) = B ) S 2 0 O ol ) = - | R
AHEA T PERI -
/load_model  FRALINZERIEZ T, i HTTP POST ¥ . 1 3K i A A AR i
(Whmodel). A FHRIR (uid) PAS AT BERYRECE S4L (HLAb 3
FNEE) | EFTIIAESS I GPU L3y H Xt B 1) PyTorch
FEA | IR E I 5E B CUDA R Seitgfl, 5 s s
TR AR iy Sk J5 S SRR LR B R
/delete_model FAUHIZEHE: O, HT BAREIEABIA LG 5 W BAF T
Ui R E R model 5 uid 5, TR A
ML REBR AT S, FFAE LA A5 T b A i, “h
SRR o 2k e AR P ) SR S L s T
/predict AR O, s TR MR A D R AT . R
M HTTP POST J5¥%, KT #57 uid, model. #tALFEK
/N (bs) PARLERH AR . i2F7HHRYE uid 5 model
TEAR HUASEZY 28 A7 v 2 RO B S, 57 o oA i 28 00 mT AR 4k o
W& ShE A N EOm B M 7ESS & GPU L3 AT Al
I HEH, TSR B AL HL A FE SR PR RB IR bR, TR HERRSE R S
SR E R A JISON JE & ]
/status BATIRESAEE 0, DA HTTP GET 5. & [l 24 Fi%s
AN E N ERARTF) e | A S Bl — T IR TR L RELRE
SR AT RGO DA 8T B A B AR5 S

PR ) e R A oy S S P S IR 55 R B R AR T T IR RRR A IR
BRSNS HE . SCRHERE SRR, PARGEATHRPIRASE I S OT g . X 204
TR SO E - T X80, T F2 R RGBS A T 5
AT . 2 B B TS ST i S S 11 B R .

e bz 02 b A NG Flask B AR AR S sh B B e e 175480, I
CUDA_VISIBLE_DEVICES 5% GPU 45 , Hifii) gevent .pywsgi .WSGIServer
TEFE & b 1S3 20 WSGHIRSs . W NFR4ES— 4% GPU 4t B2 X - B Y 92 A7
M, RN P S AN [ S B2 A LA b S BT A S BEME s / 1oad_model Al
/delete_model 5T a5 il M PR S B B S 455, T /predict 1
AL TR K o DU BE T G2 A7 8 IS A R % S HE BT

MBI ARG M %% (11 VGG-16. MobileNet, ResNet-50). i
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Transformer (DeepViT). #E#Z#A (DeepFM) . ifi (7 HIBZ (SegNet) PAK H 1K
F At BERT/RoBERTa 45 it RUVRESA ] ARG, RERSHEHIH GPU Bl A
ZH PR EILE . BIR /predict FMTES N —RANHER S, #ICRMIE
SRAZMCE W W A 306 22 8] 4 i ) S R, R i b 22 [ ] B ARDIR S AR L — R ],
JEASY G S A S R T X SR O, FEARF L E AL G MBS AR
WA . N TS B PR R O R S EE P P RE AR AL S U B SR AL
fETARIEE . ] B IAIE TR

it EiAFET Docker YA LA L — I REH M. 1F AR E I bniiE{L HTTP
B, FERRGAEARNETE FaaS S MK ME g HER LI HIGE T, MR 728
B SR IL B SR R TEREE A% DR K, SCSEEL T AT . DB A H
oy TR R 55 4 TR R B aa A T S8

4.3 fERER{ETIN2RRYSCEL

AR A RS B A B2 Ul IR B vl R BEAR AL T A IR AR e P i it 7 3, B
WA G RS B GRad 7

431 BERIEEZSH

AR, ARG L I 1 — A58 A B B R A S AL B 48
T B A OB L B 5 R - %8 2 th— 4 Python 43R5, 7 Docker
AU SR E MRS T AR INAT S SRR AL G, DR

o Megiadt: MEANIGML ST R R K, Bl 5 ) GPU asf7—BUa], 5% AR

SEBT B R B R 0 1T, AR R ST S B B B2

o JCEY: WHEGS T (T, s) dley, FEF-—3K GPU LRI Fahmiaas: Ik

oA TR, MRS Flask MW 520 /predict 1, H

WREAA AR E QPS BLFFEEE AR
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